§ 72.124

connected with the other facility; however, the sharing of utilities and services or the physical connection must not significantly:

- (i) Increase the probability or consequences of an accident or malfunction of components, structures, or systems that are important to safety; or
- (ii) Reduce the margin of safety as defined in the basis for any technical specifications of either facility.
- (1) Retrievability. Storage systems must be designed to allow ready retrieval of spent fuel, high-level radioactive waste, and reactor-related GTCC waste for further processing or disposal.

[53 FR 31658, Aug. 19, 1988, as amended at 64 FR 33184, June 22, 1999; 66 FR 51842, Oct. 11, 2001]

§ 72.124 Criteria for nuclear criticality safety.

- (a) Design for criticality safety. Spent fuel handling, packaging, transfer, and storage systems must be designed to be maintained subcritical and to ensure that, before a nuclear criticality accident is possible, at least two unlikely. independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety. The design of handling, packaging, transfer, and storage systems must include margins of safety for the nuclear criticality parameters that are commensurate with the uncertainties in the data and methods used in calculations and demonstrate safety for the handling, packaging, transfer and storage conditions and in the nature of the immediate environment under accident conditions.
- (b) Methods of criticality control. When practicable, the design of an ISFSI or MRS must be based on favorable geometry, permanently fixed neutron absorbing materials (poisons), or both. Where solid neutron absorbing materials are used, the design must provide for positive means of verifying their continued efficacy. For dry spent fuel storage systems, the continued efficacy may be confirmed by a demonstration or analysis before use, showing that significant degradation of the neutron absorbing materials cannot occur over the life of the facility.

(c) Criticality monitoring. A criticality monitoring system shall be maintained in each area where special nuclear material is handled, used, or stored which will energize clearly audible alarm signals if accidental criticality occurs. Underwater monitoring is not required when special nuclear material is handled or stored beneath water shielding. Monitoring of dry storage areas where special nuclear material is packaged in its stored configuration under a license issued under this subpart is not required.

[53 FR 31658, Aug. 19, 1988, as amended at 64 FR 33184, June 22, 1999]

§ 72.126 Criteria for radiological protection.

- (a) Exposure control. Radiation protection systems must be provided for all areas and operations where onsite personnel may be exposed to radiation or airborne radioactive materials. Structures, systems, and components for which operation, maintenance, and required inspections may involve occupational exposure must be designed, fabricated, located, shielded, controlled, and tested so as to control external and internal radiation exposures to personnel. The design must include means to:
- (1) Prevent the accumulation of radioactive material in those systems requiring access:
- (2) Decontaminate those systems to which access is required;
- (3) Control access to areas of potential contamination or high radiation within the ISFSI or MRS;
- (4) Measure and control contamination of areas requiring access;
- (5) Minimize the time required to perform work in the vicinity of radioactive components; for example, by providing sufficient space for ease of operation and designing equipment for ease of repair and replacement; and
- (6) Shield personnel from radiation exposure.
- (b) Radiological alarm systems. Radiological alarm systems must be provided in accessible work areas as appropriate to warn operating personnel of radiation and airborne radioactive material concentrations above a given